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J.  Phys. A: Math. Gen. 24 (1991) 2599-2G14. Printed in the UK 

Temperley-Lieb lattice models arising from quantum 
groups 

M T Batclielort and A Kunibat$ 
t Department of Applied Mathematics and Department of Theoretical Physics, In- 
stitute of Advanced Studies. Australiaii National University, Canberra ACT 2601, 
Australia 
$ Sdiool of Mathematical Sciences, Institute of Advanced Studies, Australian Na- 
tional University, Canbema. ACT 2G01, Australia 

Abstract .  We COIIS~ILICL fainilies of solvable quantum spin chains, vertex and in- 
teractions round a face ( IRF)  niodels from representations of the Temperley-Lieb 
algebra associated wit11 the quantum groups U q ( X , )  for X, = Az,  B,, C, and D,. 
We determine a con.elalion measuring order in the IRF models via the fusion ru le  in 
the level I Xl'' Wers-Zundiio~WitterI model. 

1. I n t r o d u c t i o n  

The advent of quantum groups Iins lead to  considerable progress in the field of solv- 
able lattice models in two-diirwnsioiial statistical mechanics. It provides a powerful 
algebraic framework for constructior: and analysing various kinds of models Another 
such structure notable i n  thr t,lieory of solvable models is the Temperley-Lieb (TL) 
algebra [l]: 

(1 . la)  

UjUj*]Uj  = Uj ( 1 . l b )  

u;uj=ujui l i - j l > l .  (1.1c) 

This algebra appears in a large class of solva1)le niotlels and is known to essentially 
govern their physical properties. Tlie assoc.ialion of the TL algebra leads to some 
equivalence relations miiong tlie ~ i i o d e l s  as formulated in [2]. 

In this paper we study solvable Ia1,tice models associated with the TL algebra in 
the framework of quautunr groups. We start from a finite-dimensional irreducible 
representation 7 ; /Aq - End Vc of a qoanlized universal enveloping algebra U, with 
highest weight sucli that. lllie tlec.oiiiposition Vt 8 Vc is multiplicity free and includes 
one trivial representalion 011 1% (dim V, = 1 ) .  Given sticli U, and x ,  representations of 
the TL algebra can be const.riic.kc1 by using tlie projector onto the space V, with the 
value of Q given b y  

fi = Trvc(q-") (1.2) 

5 On leave from: Depsrtntcnt ul Matlmnat.ics. I>aaculty of Scieace, Iiyurhu University, Fukuoka 812 
Japan. 
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where p is the half-sum of positive roots of U, [3]. 
As concrete examples we consider the cases (Vc,Uq(Xn))  = (Vz4 i l ,Uq(A l ) )  for 

spin-s, (V&,,Uq(En))> (Vil,Uq(Cn)) and (Vi,,Uq(D,,)). Namely we treat the q- 
deformations of the spin-s representation of sI(2) and the vector representation of 
so(2n + I ) ,  sp(2n) and so(2n). Here, for example, VzSi, denotes the U,(X,) module 
with highest weight 2sA1 and A, is a fundamental weight of X,: 

In the next section we give two types of representation, e and e', of the TL algebra 
based 09 this formu!a!,io!!. The former 
specialized t o  roots of unity in the latter. These representations give rise to several 
families ofsolvable quantum spin chains, vertex and IRF models which will be presented 
in section 3. The spin chain Hamiltonians (3.ln) correspond to the 'Hamiltonian limit' 
of the vertex models in section 3.2 and are U,-invariant, i.e. they commute with the 
quantum group action. Due to the underlying TL algebra, the vertex and IRF models 
are equivalent, in tlie sense of 121, with the G-vertex and the 'Q-state' self-dual Potts 
models with Q given by (1.2)-as arr the quantum spin chains with the spin-3 X X Z  
chain with appropriate coupling. However, tlie equivalence is at least a t  the level 
of the free or ground slat,e energies, with each model possessing its awn properties 
of individual interest to be investigated. In section 4 we provide one such analysis. 
In particular, we consider the IRF models corresponding to Q > 4 and follow the 
treatment of [4] b o  cletermine a correlation mcquring !,he order of t,he system: We 
find that the calculation is reduced to the problem of diagonalizing a certain matrix 
(4.4) involving X ,  characters. This is done in tlie appendix by exploiting a connection 
with the fusion rules in  Wess-Zumino~Witteii (WZw) conformal field theories [5]. The 
result (4.8) is neatly expressed in terms of the. modular transformation matrix for X t )  
characters. 

We note that the quaotuiii spin cliains for the case (V?,/I,) = (Vzsit,Uq(Al)) have 
recently been studied by several autliors. Tlre limit q + 1 has been discussed for 
general s 16, 71. As for the rrlatcd spiii-l biquadratic model [G,8], they are massive 
for s 2 1 and of relevance to the dimerization transition on SU(n) antiferromagnetic 
chains [9]. The case s = 4 has also been invest,igatecl in some detail in [lo]. 

Our main aim i n  this paper is 1.0 elucidate specific features of interest arising from 
the framewcrk of qua::?nm groups. T!?e resi:!ting N,-inTvzriz;ce provides neat expres- 
sions for the eigenvectors of incidence matrices and one-point correlation functions 
for the IRF models given in (3.1 1)  i n  terms of characters and fusion roles, etc. These 
IRF models belong to an already known class of so-called 'graph-state IRF' models for 
which one could do similar calculations i n  general but without such advantages. 

M T Baichelor and A h'uaiba 

re!eyant to generic ?.!"e. of p while q is 

2. Represei i ta t ioi is  of tlre TL w l y c h a  aiid qiiaii tum g r o u p s  

We begin by recalling some basic iiigretlients for t,lie c.onstruction of representations 
of the TL algebra oul of quantrirri groups. We describe two types of representation, 
e and e', which are related to vertex and IRF models, respectively. Unless otherwise 
stated we assume that. q is griieric, i.e. iioii-zero and not a root of unity and use the 
notation 
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2.1. Represenlalion e relaled lo  verlcr niodels 

Let U, = U,(X,) be th? quanlhed universal enveloping algebra of some finite dimen- 
sional classical Lie algebra X,, eqiiipped with a co-product 1111 

Further let 1~ : U, * End Vc be its finite dimensional irreducible representation and  
assume that the  decomposition of Vc @ Vc is multiplicity free and includes one trivial 
representation on V,. Denote by Po = P: the projector from Vc @ Vi onto V'. Then 
the following map  Q is known to provide a representation of the TL algebra on VFN 

(cf 131) 

with Q as given in (1.2). By construction the e (Uj ) s  belong 'Lo the  commutant of 
U,, i.e. [ p ( U , ) ,  1 1 @ ~ A ( ~ ) ( / l ~ ) ]  = 0, wmliere A ( N )  : U, - /ifN is the co-product t ha t  
naturally extends A = A('). 

From now on we rest.ric.1. our roilsideration to the specific examples men- 
tioned in the introdiic.tion, i.e. (Vt,/lq(,Y,,)) = ( V . ~ ~ ~ , U y ( A l ) )  with 2s E Z,, 
and ( V ~ , , U , ( B ~ ) ) , ( V ~ ~ , ~ l , ( ~ . ' , ~ ) ~  ancl (VA,,//~(D")). In these examples all of the 
weights in VF are mulliplir,ity free, wliirh colisiderably simplifies the description given 
later. Our construction is bawd OII I.he affinizat,ion Xt) of X, as well as the q- 
deformation U,(X,). I n  the rollowi~ig, we sliall always assume this correspondence 

among x,,u,(x,) ancl x!:). 
Let us fix some notations for the a f ine  Lie algebras 1121, 

Let Ai(O 5 j 5 71) bote t,lic luiidaiiieiitzil weights and put 'H* = E'.' ,=0 CAj. We 
further set 

For any element n E 'H*, we s l i i i l l  write E to  signify its classical part. We will naturally 
label the finite-dimensional irrediicil>le representations of U,(X,) by the elements in 
Cy=, Z>,,hj. We iiil,rodure ortlionorrnal vecI.ors c i ,  ( c i , c i )  = 6ij ,  and express the  
classical parts A,, p iind t,lic WI,  A or weights appearing in the representation B of 
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U,(X*) as follows: 

For X, = B,,C, and D,,, w e  cxt.eiid t.he suffix of e l ,  to -n 5 p 5 n by setting 
= -e,, (hence e,, = 0) .  We liiivc also iiitroduc.ed the index set J in (2.2) so that  e-,, 

A = { p ( f l  - f 2 )  1 p E J )  for A ,  sild A = {c,, I p E J )  for B,,C, and D,. For each 
p E J ,  let U,, E Vc deiiote the iioriiializcd weight vector having the weight p(cl - fz) 
for A, and e,, for the other cases. 'rheii the space V, that  spec.ifies the projector Po 
in (2.1) is spanned by the followiiig iioriiialiaed vector 

Q-! E ( / L ) < I - < ' " ' ' > ~ l , ,  @ V-,, (2.3) 
idEJ 

where ~ ( p )  = iI is a sign faact.or dcpw(liiig oii the choice of X,, as specified in table 1.  
We have also listed the valiies o f  fl along: with related data for later use. In particular, 

is the element of 'H* wliosc c.lassic.al part, determilles V<. Denoting the matrix unit 
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by E,, E End Vc, E,,,u, = 6,,v,,, the projector then takes the form 

Po = Q-l" E(f')E(u)q-<''t'Y'P'E,v 63 E-#-". (2.4) 
I * . " € J  

I t  followsfrom (2.1) that tl1.e TI. relationships ( l . l a )  and ( 1 . 1 ~ )  are automatically 
satisfied among the e ( U j ) s .  The ternary relationship ( I . l b )  may be verified by using 
the well-known diagramatical representation for p ( U j )  as in figure 1. 

Table 1. Darn for the algebras under consideralion. is the value in (1.2) , t 
and g are the Il~iag rootlz/2 and the dual Corerer number, respectively. For P E J 
in (2.2). the synibol ,i is defined by ,i = )r + (1 i 1)/4 for Ai w i t h  s E 2 + (1 f 1)/4 
and ,i = 0 with the exception 6 = 1 for B, 

Ai B" C" D, 

V G  [2s+ 11 [ Z ~ L  - 1][n + f]/[n - i] [n][271+ Z]/[IZ t 1) [2n - ?][nl/[n - 11 

44 (-P ( - ) I '  ' K W  1 
E ( I  - 2s)Ao t 2 s A i  ( I  - ) )A0 + A i  ( I  - 1 ) A o  + A1 ( I  - 1)Ao t A i  

t 1 1 2 1 

U 
n ;1:I I b )  

Figure 1. ( 8 , )  Diagmnmtivd I-epresenlation of p ( U , ) .  ( b )  Representation of the 
left-lmnd side 111 Llic ccrnary rclntionship ( 1 . 1 6 ) .  The right-hand side is recovered by 
Strz3ightel~llg lhe  ELl.i l lg.  

We note that there are i n  fact. nnilli-parameter representations of the TL algebra. 
They are obtained by replacing (2 .4)  wi1.h 

where the parameters z,' obey I.hc ronsl.raints 

1 - 
2,12-,, = fl 
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Regarding Q as a dependenf. variable of the L , , s ,  the nuniber of free parameters for 
U,(A,) is s (respectively s + i) when 2s is even (respectively odd) and is equal to 
the rank n in the remaining cases. Using this representation one can also construct 
solvable quantum spin chains and vertex models by the prescriptions given in (3.la) 
and ( 3 . 5 ~ ) .  However, in that case the U,-invariance, ( 3 . l b )  and (3.7), no longer hold. 
The existence of a multi-paranleter representation 6f the TL algebra for the case U , ( A , )  
h a  :ecent!y been cote:! ix!qetident!y !!I [!SI. 

2.2. Represenlalion e' reIaled lo I r i ~  11rodel.5 

Let us now proceed to another reprrseiitation e' of the TL algebra. This time, the 
basis of the representation space is labclled by a 'path' of the dominant integral weights 
(DIWS) of X i * )  with a fixed level. We let, / E Z,, denote the level and introduce the 
quantity L = t ( /  + y ) ,  where 2 and y are the-lloiig rootI2/2 and the dual Coxeter 
number listed i n  table 1 .  Then rlie DIWS have the following forms: 

A Y )  : 

M T Bnlchelor u n d  A I i u rL ibu  

a = ( L  - nl - ] )A,  + (ill - ! )A ,  

U l  E z, 0 < a ,  < L 

V u j  E Z or Vir i  E Z +  +,  L > + iI2, i r l  > n2 > .  . . > a n ,  +a, > 0. 

Given I ,  let P + ( / )  denote ~,Iir set of level I UIWS whose elements are as specified 
previously. We set P+ = U,,,Y+(I) - = Cy=, Z2,, ,<j,  From (2.2) and (2.7) the classical 
pa r t acanbeexpres sed  a s i ~ + p =  f o r A ~ ' ) a n d i r + ~ = a l r l + . . . + a , r ,  
for the other caws. For 6 E P+, let Va denote the irreducible U, module with highest 
weight 6. We define its q-di~iie~~sioii  by 

x, = 'rr"a (p]. (2.8) 

Explicitly, it is given Iiy 

for A I (2.96) 
( U i )  n [a, + iIjl["i - "jl 

s t < j  sn 
for B,, , C,, and D, (2.9c) 
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where the function h(a )  is available in table 1 .  These are the 9-analogues of Weyl's 
dimension formulae. For a generic element ?i E pt, the irreducible decomposition of 
V, @ Vc has the form 

V, 8 vc = CB-,,p+,i-a,aVs. (2.10) 

(ForU,(B,) with a, = 4, the terni corresponding to 6 = ?i on the right-hand side does 
not appear.) By evaluating q-?p 011 bot,li sides of (2.10), we get a character identity 

(2.11) 

Now we specialize the deformatioti parameter q to a root of unity as follows 

q = e  *l'L L = t ( 1  + ! I ) .  (2.12) 

We assume that L 2 2s + :I for U q ( A l ) .  Given the elements a,  b E a*, we shall call 
the pair (a, b )  adtriissi6le i f  and only if t.lie following conditions liold. (The order of a 
and b is actually irrelevant in Llir present cases because A = -A as a set.) 

AI') : a , 6  E P+(l )  

a1 - 6 ,  € { - 2 s , - 2 ~ + 2 ,  . . . ,  2s) 

a l  + I r ,  E (2s + 2 , 2 s  + 4 , .  . . , 2 L  - 2s - 2)  

where ?i = ( a ,  - l ) i l ,  ?i = ( 6 ,  - l)Al (2.13) 

5;): a , 6 E P t ( I ) , 6 - a ~ A  
I 1 # <I i f  a,& = 

C L ,  1 E Pt(l), 6 - a E A CL'), D t j  : 

These conditions have appeared i n  the solvable RSOS modelsin [14] and are also known 
as the fusion rules in WZW roitforinal lield theories (see the appendix). We will utilize 
this fact in section 4 in evaluating some physical quantities of the relevant IRF models, 
The admissibility conditions (2.13) are neatly described by incidence diagrams, as 
depicted in figure 2.  

Suppose that a E Pt(l). 'l'hen iiiidt:r the specialization (2 .12)  one can show that 
x b  = 0, where the suni is laketi over lhe level 1 integral weights 6 (not necessarily 

DIWS) of X,?) such that 6 - ci E A i w d  ( ( 1 ,  6 )  is not admissible. Combining this with 
(2.11) one can show 

f i x a  = c X b  for V a  E Pt(I). (2.14) 
bEP+(I),  [n,b).rdniirsible 

Consider now a IP+(I)(-dimensional vector space 1: = CoEP+(,) C e ,  whose base vectors 
are labelled by the DIWs. Our rcpresentation space Y of the TL algebra is defined to 
be the subspace spanned by the vectors e a p l  8 e , ( , ]  @ " .  8 e . ( N )  such that 
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Figure 2. Incidence diagrams. Each node (either filled or empty) corresponds to 
a DIW. A bond connects two  nodes if and only if they are admissible. A filled node 
is admissible to itsell. The examples slrown are: (a) AY1 level 2, s = $ (king); ( b )  
A, (1)  level 3 ,  s = (hard hexagon); ( c )  and ( d )  A(,') level 4 ,  3 = 1 (split into two 

sectors); ( e )  and ( f )  E;" level 3, (split into two sectors according to whether a, E 2 
or z + f ) ,  ( 8 )  C;" level 2, (/,I ancl (i) 0:) level 3, (split into two secton as in 

B i ' J ) .  

(U ( ' ) ,&+ ' ) )  is admissible Cor 0 5 j < N .  Then the matrices p'(CJj) E End '#, (1 5 
j < N )  defined by the following reirliae the TL relationships (1.1). 

e'(Wj)e.w @eal;] @ r 0 ~ ~ + ~ ~  @ . . . @ e e , ( w  

x e,col @ . . . & ~ P , u - ~ I  c 3 ~ ~ , C ; ) e ~ ( , + ~ i  < 3 . - @ e e , c ~ i .  (2.15) 

Here the summation 011 lhe riglll,-l~antl side is taken over d E P+(l) under the condition 
that  (d ,a( '*'))  is adnrissiblr. The ternary relationship ( I . l b )  as well as ( 1 . 1 ~ )  follow 
straightforwardly and ( 1 . l n )  is reduced to the identity (2.14). We note that x, > 0 
for a E P+(l). The  representation p' is related to e in section 2.1. The  former is 
effectively derivable from the latter by a certain base change based on the q-analogue 
of Brauer-Weyl reciprocity (cf [SI). 
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3. Q u a n t u i n  spin chains, vertex and InF uiodcls 

3.1. Quantum spin chains 

Consider a one-dimensional lattic,e populated with an interacting 'spin' a t  each site 1 5 
j 5 N .  Specifically, the spin variables range over the set of weight vectors { u p  I p E J }  
and thus our Hilbert space is an N-fold tensor product Vi@.. @V<. For U,, = U,( s l (2 ) ) ,  
these are the q-analogues of I.hc usuiil SU(2) spin states. The Hamiltonians associated 
with the representation e i i i  (2.1) are sun is  of 1.he TL operators: 

N -  1 

H = constant e(uj) (3.1~) 
j = l  

where for convenience we have assumed free boundary conditions. By definition it 
commutes with the Il,-action: 

[If, ~ @ ~ A " ' ( i l , ) ]  = 0. (3 . lb)  

This Hamiltonian has an alt,ernative expressioli i n  terms of Casimir operators, which 
we shall now explain. Let C E Id, Ibc a Casilnir clement [C,U,l = 0 and put X = 
A(C) - 1 @ C - C 03 I E I./, ~ 3 I . 4 ~ .  We s ld l  write C(A) to signify its value CI,, on 
the irreducible U,, module witli Iriglrest, weight, A .  The decomposition of V<@ V< under 
consideration has the forni - 

vi @ v< = H3AEDV, 

'D = {4sA1,(4s - 2 ) A l , .  . . , 2 A l , 0 ]  

= { 2 A I , A 2 , U ]  

for U , ( A , )  (3.2) 

for [./,(%), ~ ~ , ( C n ) ~  U,(&). 

For each A E 'D, we write S ( A )  1.0 spi'cily 1 . 1 ~  valueof X on V, C VcBVc; thus we have 
X(A) = C(A)-2C((). Dcfinc ti  l~olyiio~iiial f(x) aod a matrix X, E End (If<"), ( I  5 
j N )  by 

(3 .36 )  
j , j t I  

Assuming the non-degeneracy in the spectrum of X(A), X , / J &  is by definition the 
projector'P, itself ac.ting 011 t h e  j , ( j  + I)th slot, therefore from (2.1) we have 

X, = <,(U,) (3 .4)  

which yields an alteriiative Pxprrssioii for the Hamiltoirian (3.  lo) in terms of Casimir 
operators. 

the operator 
Xj is essentially the Heisenberg inl.eraction term U ; U ~ + ~ + ~ ~ U ~ + , + U ~ U ; + ~ .  Besides the 
explicit matrix elements, available from ( 2 . l ) ,  (2 .2)  and (2.4), the local Hamiltonian 

A few remarks are i n  order for 1.11c c u e  l l q ( A l ) .  When q = I and s = 
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X. = @(Uj) is in princ,iple also e.xpmsihle iii terms of the usual representation matrices 
for SU(2) generators starting from the general formula (3 .3) .  The resulting q-deformed 
Hamiltonian has been written down for s = 1 i n  [15], see also [16]. However for 
s > 1, the representation matrices for N,,(A,) are no longer proportional t o  their 
classical counterparts ( q  = 1) atid writing the Hamiltonian in termsof the usual SU(2) 
operators becomes very cutiibersottie. The formula ( 3 . 3 )  and the corresponding value 
of,&, J& = [Zs + I], provide the  anisotropic generalization of the results obtained in 
[7] for q = 1. However, ttw s[I(11) Ilaiiiiltoiiiaiis discussed in [9] do not belong to  the 
present family for 71 2 3 sinre i n  t,liat raSe llie Hilbert space is the alternating tensor 
product V @  V I @ .  . . V @ V’, where V’ has the conjugated highest weight t o  that of V .  

The  Hamiltoniaiis for the reiiiuinitig c.ases N,(B , ) ,  l lq (Cn)  and U,,(D,) appear to 
be new although due to the ‘rL equivalleiice, they are expected to possess the same 
thermodynamic properties as the spii i-$XXZ chain with appropriate coupling. 

3.2. Vertex models 

Using the represmta!,ion e (2.1) of the TL algebra, one can also build solvable vertex 
models whose Hainiltoiiiaii liinit leads to t,he previously mentioned quantum spin 
chains. To do so, we iiilroducc, aii operator R(u)  E End (Vi @ Vi)  by 

M T Bntchrlor n i i d  A l i r i i i i b n  

I 

where U E C is the spectral parameter and the ‘anisotropy parameter’rl is chosen so 
that 

2cosh11 = A. (3.6) 

The matrix R(u)  CO~IIIII~~~~S wit.11 t h e  qiiatituiii grolip action, i.e. 

[ R ( u ) ,  n”’A(N,)] = U. (3.7) 

Setting 

one can readily show that tlw Yatlg-Baxter equation 

Rj+I (~ )R j ( t t  + ~ ) l l j + i ( ~ )  = R j ( ~ ) R j + , ( u  + ~ ) R j ( u )  (3.9) 

is valid owing to the TL relnliolis attiong the e ( U j ) s .  Thus the matrix R(u)  gives rise 
to a solvable vertex niodel oti a plaiiar square lattice with the following features: 

(1) the local states range over the set {u , , } , , ~ ,  of the base vectors of Vi; and 
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( 2 )  the Boltzmann weight of the configuration u p ,  v A , v x ,  up round a vertex (ordered 
clockwise from the upper bond) is giveii by R(u,p),,,,, in ( 3 . 5 6 ) .  

As aresult of (1) the nuniherof the states isgiven by dimVC(= limq+l a) = 2s+l 

for A!'), 2n + 1 for E!!), 271 for C!!' and DV'. Due to the TL algebra the model 
is equivalent to the 6-vertex and tlie 'Q-state' self-dual Potts models through the 
argument in (21. In fact, the c.ases N ? ( A , )  with s = and U,(C,) yield the 6-vertex 
model itself. When 9 = I ,  t,lie vertex models here reduce to those discussed in [17] 
(see also [6]), where the ~iuiiiber of I.he states is equal to the square root of that  for 
the equivalent Potts model. The Hamiltonians ( 3 . 1 ~ )  are readily recovered by taking 
the logarithmic derivative of the row-to-row transfer matrix with respect to U. 

9.9. IRF models 

Let us turn to the LIW n i u d d s  related to the representation e' (2 .15) .  Define an 
operator W,(u) E End '€', ( I  5 j < A') by 

where the parameter r) is choseii as i n  (3.6) with the specialization (2.12) on the right- 
hand side. By virtue of the TL relations ainong the e ' (Uj ) s ,  the Yang-Baxter equation 
(3.9) is valid again for the Wj(ii)s. As a result we obtain solvable IRF models with 
the following features: 

(1) the local states raiigr over the set P+(l) (2 .7)  of the DIWs of X?); 
(2) the adjacent pairs of local stal.es ( U ,  6 )  must be admissible as specified in (2.13); 

(3) the Boltzmaim weight I",, (: p)  of the face configuration ( R  at the NW 

and 

corner of the face, etc) is giveii Iby 

(3.11) 

where the x n s  are those i i i  (2.9) uiider t l ie  spec.ialization (2.12). 
Conditions (1) and ( 2 )  are drpicted iii the incidence diagrams of figure 2. Each 

node therein correspoiids to a 1oc.iil st,ate. Two states can occupy adjacent lattice sites 
if and only if the correspoildiiig i i o d ~ s  are coiinected by a bond. 

Using (3.7), one can r&Lr the preseiil IIW niodels to the vertex models in section 
1 +L.--,,J. +I,- ~.,....6.1~..r1j1. ~l l l . l . l ._ . . .~ l l l i l l . l~~~ : . ~  +L., L.n.le_ of r I Q i  F~~ 11 ( A  ... :,L 

-q\"ll .."" 
s = and / l q ( C l )  the preseiit, construction gives the trigonometric limit of the 8- 
vertex solid-on-solid inodels [18]. The corresponding values of Q are given by the 
Beraha numbers, Q = 4cos'n/L, that appeared i n  the work [20] as observed in [Zl, 
221. Models having the structure (3.11) have also been discussed in [4, 22, 231. Due 
to the TL equivalence with tliz 'Q-state' self-dual Potts model, they are critical for 
Q 5 4 and a t  a first-order trailsition for Q > 4 .  

"_* " L " " Y 6 "  Y l l L  I r l Y C . .  L1.l ~-, .~. . , l ," , , . ,~ . ,~ . .  1 1 1  ".LC OL..,>L L'YJ. 
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4. IRF models w i t h  Q > 1 

In this section we investigate the order in the IRF models for Q > 4. From table 1 and 
(2.12) we find that the f ~ l l o w i ~ ~ g  cases correspond to such a situation, 

A\') : 

cp :  1 1 > 2 , / > 2  

s = I ,  1 2  5,  or s 2 ;, I 2 2 8 + 2  
d l l  . ". .. . I  , . ., 
Y '  ' . # L  < L , ,  < ., 

DL') : n >_ 3 ,1  2 3,  

As previously mentioned, these models should be at  a first-order transition point 
vcc-uuc vL u w  I k  . zqu;vau , . .  w t w  w c  I u m  ~ I U L ~ .  I . ~ U  r l l lpuc~  uic e . u ~ w l c c  of a 
broken symmetry or order withiri the system. Let us  evaluate the correlation between 
a boundary state dN) and a state a(') deep within the lattice C through the method 
of [4]. In the following, we let J& > 2 be as in table 1 under the specialization (2.12), 
fix the parameter 11 by (3.6) with 11 > 0, and assume that 0 < U < 7. 

L-"" . P I , . . : -  ..., I ̂ ..^^ ... : A , .  A,.- n - l r .  1-1 mL:-: - . - l : . . .L .  . . . : . L . . ~ ~ ~  

Consider the partition funcl.ion of the model 

where the product extends over all faces of the lattice L. Substituting (3.11) into this 
one gets an expansion of Z i i i  k r i n s  of I<ronecker deltas. Placing a diagonal bond con- 
necting the sites i and L !j aod / )  wl~eii picking up terms involving 68!i! c!L !  (Sic!, <!,!)! 
each summand in the expansion is specified by a bond graph on C. The lattice sites 
connected by a bond thereill take the same state, forming a cluster. We fix the bound- 
ary effects so that every bond graph coiisists of an infinite boundary cluster and some 
finite clusters contained i n  it. Let a(" be a site variable belonging to the boundary 
cluster and a(') be the one deep witliiii the lattice C. We define the correlation Fab 
by 

~ ~ T n b  = z-' 6,,[nJ6*,i-J n wu [ a(i) fl(bl .(jl 1 (4.3) 
col,tigurnrl"nr faces 

for any a,  b E P+(/ ) .  It is the probability of finding the configurations such that 
a(') = a under the c.onditioii that  the bounclary cluster assumes the value b.  It is well 
known that the bond graphs on C are iii one-t,o-one correspondence with the so-called 
polygon decompositioiis OII its dual lattice (cf [24]). In [4], Owczarek and Baxter have 
extensively used this fact and obtained a formula expressiug the correlation of this 
kind in terms of 'generalized percolation probabilities'. It applies quite generally to 
the TL type IRF models having the struc.ture (3.11) with Q > 4. To adapt it to the 
present models, we define a \P+(l)l x IP+(/)l mat,rix V by 

v = ( V , , ) " , B E P + , l ,  

V'lb = x, x* i f  ( C L ,  b )  is iicliiiissible 

= o  otlrcrwise. 

(4.4) 
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We also define Y = (Yab)a,bEl>+(ll to bc tlie matrix that diagonalizes V and denote by 
{A, I c E P+(l)} tlie cotnplete set of cigeiivalues of v. Then 

Y - ~ V Y  = diag(X,),Ep+(l). (4.5) 
We regard the lattice L as consisting of two sublattices in the usual way and set r = 0 
or 1 according to wliet,lier a(') and a(") belong to tlie same sublattice or not. Under 
this setting, we q p ] y  (8.7) it! [a] (wit]: :::!no: ~;o.'ificr&on) an.' ded-ce the f~]!o::ing 
expression for the correlation Fab (4.3): 

7 0 ,  = Y * A ~ - l ) c , J ; r ( L )  (4.6a) 
C€P+(lI 

( 4 . 6 ~ )  

The quantities G,(z) and G 1 ( z )  are first ohtained i n  [25] as the generating func- 
tions for 'generalized percolation proliabilities' in  the dichromatic formulation of the 
self-dual Polls model. Matlieiiialirally, they are ratios of the level 1 A!') characters 
(cf [I21 p 217) 

(4.76) 

where the subscript A, ( T  = U, 1) signifies tlir highest weight of the level I AI') mod- 
ules. In this way tlie problem is reduced to finding the matrix Y in (4.5) that di- 
agonaiises ~ i i e  iria~rix Y i n  \ * i , * i , .  1 n i s  has been done i n  ihe appendix: see jA9). 
In particular, we have exploited 1,116 Sac(, that t l ie admissibility condition in (2.13) is 
nothing but the fusion rule i i i  I w f d  1 ,Y!" WZW niodel in conformal field theory [5 ] .  
With the use of Verliiide's Soririiila [20] we arrive a t  the result 

1 1 ~ ~  ~ ~ ~ - I ~ . ~ ~  > *  .~~ I "  * \  ",,~.~ 

(4.8a) 

where S = (S,b),,,,p+(,) is given i n  (A3) .  It is the symmetric unitary matrix describing 

a modular transformation rule of the level I X!?) characters. In view of (4.5), (4.Ga) 
and (AS), this result, cau also be expressed as the matrix element 

(4.86) 

where Nc is the fiisioti rule niatrix ( A 7 b ) .  Tlir correct normalization E, Fa, = 1 h a s  
been achieved due to t l ie  i(leiit,il.y 

F",, ,." = C r ( V ) , ; :  = :?;:x;iG!.!NF),n 

X b  = C;r(A'()ba.tcz (4.9) 
o € P + ( l )  
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which immediately follows froin (;,.(a) = I and (2.14), i.e 

ax* = (N()*..\.. (4.10) 
O € P + ( I )  

The result (4.8) gives a description of the order in the IRF models for the cases 
!isted in (”!]. 
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Appendix. Diagoiialixatioii of t l ic i i ia t r ix  V 

Here we diagonalize the inatrix V defined i n  (4.4) and thereby determine Y and A, 
in (4.5). Clearly one has to coiivert. r l~e condition ‘admissible’ in (4.4) into a more 
manageable form. The kry to doing t,liis is the observation that the admissibility (2.13) 
is nothing other than the fiision rule i n  the level 1 Xh“ WZW model in conformal field 
theory [5]. More precisely, wc liave t.he quantity N t c  determined from any three DIWs 
a, b, c E P+(/) such that 

N t r  = 1 if ( ( L ,  I r )  is admissible 

= o  otherwise. 

Here f E P+(1) has beeii lisled i n  table 1. It is the DIW whose classical part  specifies 
the basic constituent V, of our forinulation in the main text. Furthermore, the N,bc 
has ihe ioiiowing expression kiiown as Veriinde’s formuia [as]: 

where f stands for t,lie coi i i l ) lex cuiijiigate and .i; = (,5’ab)a,bEPt(Ij is the modular 

transformation (T - - I / T )  uiiitrix of [,lie level 1 X!:’ characters. The elements are 
essentially specialized cliaractrrs uf thc classical part  X,,  evaluated at a + p [12]. 

where A+ denotes the set of posiilivc roots of X,, and ( is a constant specified in table 
1 and independent of n and 6 .  For rxaiiiple i l l  A:”, one has 
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for a = ( I  + 1 - a,)h,  + (al - I ) A ,  a t i d  6 = ( 1  + I - 6,)& + ( b ,  - l ) A , .  For the other 
algebras, explict forniular i i i  t r r i i is  of drt,eririinaiits c.an be found in [27]. The  S is a 
symmetric unitary iriatrix, i.e. 

Sah = Sb0 .Kc = bo* .  (A4) 
c € P t ( I )  

In particular, SIAo (L is known to be real and positive for any a E P+(l). From (A2) 
and (A4) we have 

Comparing (A3) with (1.2) a n c l  (2.8) riiider t,li+ specialization (2 .12) ,  we also get 

Therefore from (4.5), the X,s are i n  fact eigenvalues of the fusion rule matrix Nc and 
xY is the one diagonalizing i t .  Thus froin (AS) we find the solution 

This completes the diagonaliznlioii of Lllc inal.rix V 

Note oddrd in pvoof. The autliois Ilinnk Lh T Degiiclii lor informing us that the multi-parameter 
representations (2.5) and (2 .6)  liiive alsu b c w  obtained in [28]. Very recently, U,(SU(Z))-invariant 
Hamiltonians were discussed i t ,  (291 and wi l len  in terins of classical spin generators lor spin 5 .  The 
IRF models of aructiiie (3.11) liave also I,rcn stodied by a number oi authors [see e.g. 130-33) and 
reierenees therein). 
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