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Temperley-Lieb lattice models arising from quantum
groups

M T Batchelort and A Kunibai§

t Department of Applied Mathematics and Department of Theoretical Physics, In-
stitute of Advanced Studies, Australian National University, Canberra ACT 2601,
Australia

1 School of Mathematical Sciences, Institute of Advanced Studies, Australian Na-
tional University, Canberra ACT 2601, Australia

Abstract. We construct families of solvable quantum spin chains, vertex and in-
teractions round a face (IRF) models from representations of the Temperley-Lieb
algebra associated with the quantum groups Ug(Xn) for Xn = A;, Bn,Cr and Dy,
We detenmine a correlation measuring order in the IRF models via the fusion rule in

the level { X,(ll} Wess-Zumino—Witten model.

1. Introduction

The advent of quantuin groups has lead to considerable progress in the field of solv-
able lattice models in two-dimensional statistical mechanics. It provides a powerful
algebraic framework for constructing and analysing various kinds of models. Another
such structure notable in the theory of solvable models is the Temperley-Lieb (TL})
algebra [1]:

vl = VQu; (1.1a)
UjUsnaU; = U; (1.15)

This algebra appears in a large class of solvable models and is known to essentially
govern their physical properties, The association of the TL algebra leads to some
equivalence relations among the models as formulated in [2].

In this paper we study solvable lattice models associated with the TL algebra in
the framework of quantum groups. We start {rom a finite-dimensional irreducible
representation 7 : I, — End V¢ of a quantized universal enveloping algebra U, with
highest weight £ such thal the decomnposition Ve ® Vg is multiplicity free and includes
one trivial representation on ¥, (dim V, = 1). Given snch M, and 7, representations of
the TL algebra can be constructed by using the projector onto the space V; with the
value of @ given by

V@ =Try (¢ (1.2)

§ On leave from: Department ol Mathematics, Faculty of Science, Kyushu University, Fukuoka 812
Japan,
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where g is the half-sum of positive roots of I/, [3].

As concrete examples we consider the cases (VU (X)) = (Vo,5,,U,(4,)) for
spin-s, (Vz, .U (Bn)), (V3. i,(C,)) and (V;,,U(D,)). Namely we treat the g-
deformations of the spin-s representation of sl(2) and the vector representation of
so(2n + 1), sp(2n) andvso(2n)._Here, for example, V5, denotes the i (X, ) module
with highest weight 2sA, and A| is a fundamental weight of X .-

In the next section we give two types of representation, g and ¢, of the TL algebra
based on this formulation. The former is relevant to generic values of ¢ while ¢ is
specialized to roots of unity in the latter. These representations give rise to several
families of solvable quantum spin chains, vertex and IRF models which will be presented
in section 3. The spin chain Hamiltonians (3.1a) correspond to the ‘Hamiltonian limit’
of the vertex models in section 3.2 and are I, -invariant, i.e. they commute with the
quantum group action. Due to the underlying TL algebra, the vertex and IRF models
are equivalent, in the sense of [2], with the 6-vertex and the ‘Q-state’ self-dual Potts
models with @ given by (1.2)-—as are the quantum spin chains with the spin- XX Z
chain with appropriate coupling. However, the equivalence is at least at the level
of the free or ground state energies, with each model possessing its own properties
of individual interest to be investigated. In section 4 we provide one such analysis.
In particular, we consider the IRF models corresponding to @@ > 4 and follow the
treatment of [4] to determine a correlation measuring the order of the system. We
find that the calculation is reduced te the problem of diagonalizing a certain matrix
(4.4) involving X, characters. This is done in the appendix by exploiting a connection
with the fusion rules in Wess-Zumino—Witten (WZW) conformal field theories [5]. The
result (4.8) is neatly expressed in terms of the modular transformation matrix for X ,(,l)
characters.

We note that the quantum spin chains for the case (Vg, i, ) = (Va,4,, U, (A1) have
recently been studied by several authors, The limit ¢ — 1 has been discussed for
general § {6, 7]. As for the related spin-1 biquadratic model [6,8], they are massive
for s > 1 and of relevance to the dimerization trausition on SU{n) antiferromagnetic
chains [9]. The case s =  has also been investigated in some detail in [10].

Our main aim in this paper is to elucidate specific features of interest arising from
the framework of quantum groups. The resulting If -invariance provides neat expres-
sions for the eigenvectors of incidence matrices and one-point correlation functions
for the TRF models given in (3.11) in terms of characters and fusion rules, etc. These
IRF models belong to an aiready known class of so-called ‘graph-state IRF’ models for
which one could do similar calculations in general but without such advantages.

2. Representations of the TL algebra and quantum groups

We begin by recalling some basic ingredients for the construction of representations
of the TL algebra cut of quantum groups. We describe two types of representation,
¢ and g, which are related to vertex and IRF models, respectively. Unless otherwise
stated we assume that g is generic, i.e. non-zero and not a root of unity and use the
notation
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2.1. Represenlaiton p relaled o vertex models

Let U, = U (X,,) be the quantized universal enveloping algebra of some finite dimen-
Slonal classmal Lie algebra X equipped with a co-product [11]

A, — U, U,

Further let 7 : #/, — End V; be its finite dimensional irreducible representation and

assume that the decomposition of V; ® V¢ is multiplicity free and includes one trivial
representation on V. Denote by ’PO = PG the projector from V; @ V¢ onto V;. Then
the following map o is known to provide a representation of the TL algebra on V®N

(ef [3])

e U= Qo 1e Py ®l.--®1) 1<j<N (2.1)
N
J.i+l

with @ as given in (1.2). By construction the p(U/;)s belong io the commutant of
U, ie [o(U;), @ AWMU ) = 0, where AN : 1y — UBN is the co-product that
naturally extends A = A(?).

Fromm now on we restrict our consideration to the specific examples men-
tioned in the introduction, ie. (Vi M (X)) = (Vy5,,U, (A1) with 2s € Z,
and (Vz,, U (B, ), (Vg 14,(C,)) a.ud (Vi,» H (£2,)). In these examples all of the
weights in V- are mult.lplmty free, which couslderably simplifies the description given

later. Qur construction i1s based on the affinization X,(,]) of X, as well as the ¢-
deformation I (X ). in the following, we shall always assume this correspondence

among X,,, i (X, ) and x4
Let us ﬁx some notations for the affine Lie algebras [12],

X = A, B ¢l and DY

Let A;(0 < j < n) denote the fundatental weights and put H* = Z;zo CA;. We
further set

p-“-A0+"‘+A".

For any element a € H*, we shall write @ to signify its classical part. We will naturally
label the finite-dimensional irreducible representations of I (X } by the elements in
E;—] Z>UA We introduce orthonermal vectors ¢, (¢, J) = §;;, and express the
classical parts A;, p and the sel. A of weights appearing in the representation 7 of
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U (X,,) as follows:

A A= {s(e) — ) (s — )6 —ex)y .., —8(e; —€y)}
Al = -_‘la((: -~ (g}
= %(fl - €5)

7
J={s5-1,...,—s}

B, (n>22): A={0,%e,...,%¢,}
A=+ +¢ (1 <i<n)
=4a+te)  (i=n)
p=—g)q++3e,
J={0,x1,...,&n}

C.(n21): A={xe,..., xe.} (2.2)
Ai=e 4+ +¢ (1<i<n)
p=no A4ty

J=A{xl, ..., xn}
D,(n>3): A={%e,.... . x¢,}

A=+ o+ (1<i<n-1)
=%((l+”'+(n—l_€n) (i:n_l)

%(El+"'+fn—l+€n) (izn)

g=(n—De,+-- 46,
J = {F1,... . xn}.

For X, = B,,C, and D,, we extend the suffix of ¢, to ~n < pp < n by setting
e, = —¢, {hence ¢y = 0). We have also introduced the index set J in (2.2) so that
A= {plc; ~e)) | ppeJ}for Ay and A= {e, | p€J} for B,,C, and D,. For each
1€ J, let v, € Vg denote the normalized weight vector having the weight u(e; — €5)
for A, and ¢, for the other cases. Then the space ¥ that specifies the projector Py
in (2.1) is spanned by the following normalized vector

Q_* Z E(]l,)q_'((“ vﬁ>u“ £ v_y (23)

HEJ

where g(u) = x1 is a sign {actor depending on the choice of X, as specified in table 1.
We have also listed the values of /@ along with related data for later use. In particular,
€ is the element of H" whose classical part determines V. Denoting the matrix unit
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by E,, € End Vg, E, v, = §,,v,, the projector then takes the form
Po=Q V2 Y e(ue(v)g <t E,,QF_,_,. (2.4)
wved

1t follows from (2.1) that the TL relationships (1.1a} and (1.1¢) are automatically
satisfied among the o(U;)s. The ternary relationship (1.15) may be verified by using
the well-known diagramatical representation for ¢{U;) as in figure 1.

Table 1. Data for the algelras under consideration. /@ is the value in (1.2) , ¢
and g are the |long root)?/2 and the dual Coxeter number, respectively. For p € J
in {2.2), the symbol fi is defined by i =+ (1 £ 1}/4for Ay withs€ Z+{1£1)/4
and [t = 0 with the exception 0 =1 for By

Ay Bn Cn Dn
N f2s +1] [2n — 1][2 + -{,—]/[n - %] [n)izn + 2)/[n+1] [2n-2][n]/[n - 1]
¢ (1—2s}Ao +25A1 (1= 1)Ao+ A (= 1)Ag + A1 (1 - 1)Ao + Ay
e(w) {-)* - sgny 1
i 1 1 2 1
g 2 2n— 1 n+1 2n—2
h(s) fa f2a] 1
¢ 1/V2L 1j2/En 1/VLn /v

N

U/
a

J J+1 m

{a) {b)

Figure 1. («) Diagramatical representation of p(U;}). (b) Representation of the
left-hand side of the ternary relatiouship {1.16). The right-hand side is recovered by
straightening the string.

We note that there are in fact mulli-parameter representations of the TL algebra.
They are obtained by replacing {2.4) with

Z 2“2‘, E,«w @ E—u—u (25)

wwvES

where the parameters z, obey the constraints

%

I
2,2_, =

o= 7
Zz;‘: = 1.
ped

(2.6)
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Regarding @ as a dependent. variable of the 2,5, the number of free parameters for
U(A4,) is s (respectively s + 1) when 2s is even (respectively odd) and is equal to
the rank n in the remaining cases. Using this representation one can also construct
solvable quantum spin chains and vertex models by the prescriptions given in (3.1a)
and (3.5a). However, in that case the i/ -invariance, (3.18) and (3.7), no longer hold.
The existence of a multi-parameter representation 6f the TL algebra for the case i (4,)

has recently been noted independently in [13].

2.2, Representation o' velaled {0 15F models

Let us now proceed to another representation g of the TL algebra. This time, the
basis of the representation space is labelled by a ‘path’ of the dominant integral weights
(DIws} of XY with a fixed level. We let [ € Z., denote the level and introduce the

quantity L = (I + ¢), where ¢ and g are the |long root}?/2 and the dual Coxeter
number listed in table 1. Then the DIWs have the following forms;

AV g = (L= ay - DAy + (a, — DA,
01€Z,U<01<L

n-1
B: a=(L-a - ay — Ay + Z(“i - @y~ DA+ (20, — DA,

i=1
Va,-EZorVrtiEZ+zl,,L>rzl+a._,,a]>a.l.">--'>an>0

il (2.7)
CV: a=(L/2—a; — A+ Z(ai —ag, = DA + (e, — 1A,

i=]
Ve, €2, L/2>a, >ay> - >a, >0

n-1

DIV a=(L-a —a,— A+ Z(“i —a;, ~ DA+ (g, +a, - DA,
i=}

Va, €ZorVa,-eZ+%, L>a +ty,a;,>0y>--->a,,a,_,+a,>0.
Given {, let P (!) denote the set of level { DIWs whose elements are as specified
previously. We set f3+ = Upso Pp(l) = 200, Zzuﬁi. 'rom (2.2} and (2.7) the classical

part & can be expressed as i+ § = $a,(c; — ¢,) for A(ll) anda+p=a,¢e, +---+a,¢,
for the other cases. For @ € P, let 'V, denote the irreducible &/, module with highest
weight a. We define its g-dinension by

Xe =Try, (47). . (2.8)

Explicitly, it is given by

x, = Ltz (2.9a)

F
{(11} for Al (295)
gy, =4 L #a) IT  la+allei—a)]
1€ign 1<i<jgn
for B C" and Dn (2-96)

n
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where the function h(a) is available in table 1. These are the ¢-analogues of Weyl’s
dimension formulae. For a generic element @ € P, the irreducible decomposition of
V3 ® Vg has the form

Va ® Ve =5, 5-0eaVs (2.10)

(For U,(B,,) with a,, = 1, the termi corresponding to b = @ on the right-hand side does
not appear.) By evaluating ¢™%7 on both sides of (2.10), we get a character identity

Vax.= Y. x (2.11)

beP, b-agA
Now we specialize the deformation parameter ¢ to a root of unity as follows
g =e"/t L=t{l+yg) (2.12)

We assume that L > 25+ 3 for 24, (A,). Given the elements a,b € X, we shall call
the pair (a, b} admissible if and only if the following conditions hold. (The order of a
and & is actually irrelevant in the present cases because A = —A as a set.)

AV e ber ()
a, —b; € {~25,-25+2,...,25}
ay+b, € {25 +2,25+4,...,2L — 25— 2}
where @ = (a, — 1}A,, @ = (b, — 1)A, (2.13)
B abeP (i) b—acA
btaila, =3

pl

Cr(ll)’ Dhl) coa,bEP (I}, b—a€ A

These conditions have appeared in the solvable RS0S models in [14] and are also known
as the fusion rules in WZw couforinal field theories (see the appendix). We will utilize
this fact in section 4 in evaluating some physical quantities of the relevant IRF models.
The admissibility conditions (2.13) are neatly described by incidence diagrams, as
depicted in figure 2.

Suppose that a € P, ({). Then under the specialization (2.12) one can show that
203 X = 0, where the sum is taken over the level [ integral weights & (not necessarily

DIWs) of X such that b - a € 4 and (e, b) is not admissible. Combining this with
(2.11) one can show

VOx, = 3 X,  forVae P(). (2.14)

bEPL(1), (a,b):admissible

Consider now a | P, ({)|-dimensional vector space £ = 3 . p 1y Ce, whose base vectors
are labelled by the DIWs., Our representation space ¥ of the TL algebra is defined to
be the subspace £¥N+ gpanned by the vectors e, @ €,0) ® -+ - ® €4y such that
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{al Y-} Lh}

o N O 2A g0 A,y 2Ageh;
My Agh, 24, i, ey A ZA, 3A,
{c) td) Agriigehy Ageye Ry
~ = ~ = =
by 27428, BA, ey AgedA, -/_ | : |

I, A ify 2 Ay I,

te)

tF) 2y hy A A,
hg+2hy  Ap2ng 3,

D O I

Lr

A 2A, A28y

3, WA Agr2h 3N, Ungefy Agrhyehy 2hpi,
g Q1 Arshgehy Age Age Ay

o c/ / | o
Agrhy Ay hy 3A Agr 2y 2ty 34,

Ay 2h,y Age2hy

2A, Aged, W,

Figure 2. Incidence diagrams. Each node (either filled or empty) corresponds to
a DIW. A bond connects two nodes if and only if they are admissible. A filled node
is admissible to itsell. The examples shown are: (a) A(ll) level 2, s = % {Ising); (&)

A(ll) level 3, s = % (hard hexagon); (¢} and (d) A(il) level 4, 3 = 1 {split into two
sectors); (e} and {f) Bg” level 3, {split into two sectors according to whethere; € Z
o Z + %), (9} C‘g” level 2, (4} and (i) Dg” level 3, (split into two sectors as in
By,

(a(-"),a(—"'"'”) is admissible for § < j < N. Then the matrices ¢'(U;) € End ¥, (I <
j < N) defined by the following realize the TL relationships (1.1).

'(U;)eam ® - @ egi-1 B ey Beauin @ R eym

=& Xa Xg
= Oq0-1) qli4n) —_—
P Xuti- Xati+n

X €,m -0 Cata=1) ) ey €alit1) & Begny- (215)

Here the summation on the right-hand side is taken over d € P, (I} under the condition
that (d,aU%V)) is admissible. The ternary relationship (1.16) as well as (1.1c) follow
straightforwardly and (1.1a) is reduced to the identity {2.14). We note that x, > 0
for a € P,(I). The representation ¢ is related to ¢ in section 2.1. The former is
effectively derivable from the latter by a certain base change based on the g-analogue
of Brauer-Weyl reciprocity {cf [3]).
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3. Quantum spin chains, vertex and mrF models

3.1, Quantum spin chains

Consider a one-dimensional lattice populated with an interacting ‘spin’ at each site 1 <
J < N. Specifically, the spin variables range over the set of weight vectors {v | peJ}
and thus our Hilbert space is an N-fold tensor product V;®@---®Vg. Forll, = U, (s1(2)),
these are the g-analogues of Lhe usual SU(2) spin stdteq The Hamlltonlans assocmted
with the representation g in (2.1) are sums of the TL operators:

H = constant Z o(U;) (3.-1a)
j=1

where for convenience we have assumed free boundary conditions. By definition it
commutes with the X -action:

[H, »®V AN (U ) = 0. (3.15)

This Hamiltonian has an alternative expression in terms of Casimir operators, which
we shall now explain. Let ¢ € U, be a Casimir element [C,U4] = 0 and put X =
A(C)—1@C-C@ !l eld, iU, Weshall write C(A) to signify its value Cly, on
the irreducible i/, module with highest weight A. The decomposition of Vz & V¢ under
consideration has the form

V:® Vi = @renVi
D = {4sA,,(4s — 2)A,,..., 24,0} for 4 (A,) (3.2)
= {2A,,A,,0} for U, (B,.), U, (C,), U, (D).
For each A € D, we write X{A) to specify the value of X on V3 C Vi@ Vg; thus we have

X(A) = C(A)-2C(£). Define a polynomial f(x) and a matrix X; € End (VgﬂN), (1<
J < N)by

\/_ H (_ﬂél“) (3.3a)

Ren. dgo A (0) = X(A)
X;=1® - lo@EenfX)ol ol (3.3b)
'&-—--5::-—'—/
12

Assuming the non-degeneracy in the spectrum of X(A , X;/V@ is by definition the
projector P, itsell acting on the j, (j + 1)th slot, therefore from (2.1) we have

X; = oll/;) (3.4)

which yields an alternative expression for the Hamiltonian (3.1a) in terms of Casimir
operators,

A few remarks are in order for the case i, (A;). When ¢ = land s = 1 the operator
X; isessentially the Heisenberg interaction term O’J J+1+"J JJ+1+UJ’- oi41 Besides the
exphc:t matrix elements, available from (2.1), (2.2) and (2.4), the local Hamiltonian
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X; = o(U;) is in principle also expressible in terms of the usual representation matrices
for SU(2) generators starting from the general formula (3.3). The resulting ¢-deformed
Hamiltonian has been written down for s = 1 in [15], see also [16]. However for
s > 1, the representation matrices for ¢ (A;) are no longer proportional to their
classical counterparts (¢ = 1) and writing the Hamiltonian in terms of the usual SU(2)
operators becornes very cumbersore. The formula {3.3) and the corresponding value
of @, V@ = [2s + 1], provide the anisotropic generalization of the results obtained in
(7] for ¢ = 1. However, the SU(n) Hamiltonians discussed in [9] do not belong to the
present family for n > 3 since in that case the Hilbert space is the alternating tensor
product V@V'®. .- V@V’ where V' has the conjugated highest weight to that of V.
The Hamiltonians for the remnaining cases i, (B,,), i, (C,,} and U (D, ) appear to
be new although due to the TL equivalence, they are expected to possess the same
thermodynamic properties as the spin—%XXZ chain with appropriate coupling.

3.2. Verlez models

Using the representation g (2.1} of the TL algebra, one can also build solvable vertex
madels whose Hamiltonian limit leads to the previously mentioned quantum spin
chains. To do so, we introduce an operator R(u) € End (Vz @ V) by

sinh(z ~ smh u
mls ) Vc®V£ +

R(u) = Z R u q);tuxAEpu ® Em\ (35“')

sinh n smh ?]

sinh{y — u) sinh u

=St s> 3.5b
SiIl]l 1 pEYRA 5(“)5(1/)'? 6_(,; -—néu -A ( )

R(u,q) 00 = sinh gy

where u € C is the spectral parameter and the ‘anisotropy parameter’s is chosen so
that

2coshy = /Q. (3.6)
The matrix R(u) comimutes with the quantum group action, i.e.

[R(u), 7®*AWU, )] = 0. (3.7)
Setting

R(uwy=1lw 16 Rujel---al
et

Jaitl

_ . (3.8)
one can readily show that the Yang-Baxter equation
Ry (ud R (u+ o)y (v) = Ry(u)R; 4, (w4 4) R;(u) (3.9)

is valid owing to the TL relatious among the o(U; Js. Thus the matrix R(u) gives rise
to a solvable vertex model on a planar square lat,tlce with the following features:
(1) the local states range over the set {v,} ., of the base vectors of Vg; and



Temperley-Liek models and quantum groups 2608

(2) the Boltzmann weight of the configuration v,, v, ,v,, v, round a vertex (ordered
clockwise from the upper bond) is given by R(u,q},,. in (3.55).

As aresult of (1) the number of the states is given by dimV(= lim,_,, V@) = 2s+1

for A(l) 2n + 1 for B,1 , 2n for C’,(;l) and ngl). Due to the TL algebra the model
is equwalent to the 6-vertex and the ‘)-state’ self- dual Potts models through the
argument in {2]. In fact, the cases H(,(A } with 5 = :2- and L{ ,(C1) yield the 6-vertex
model itself. When g = 1, the vertex models here reduce to those discussed in [17]
(see also [6]), where the nuinber of the states is equal to the square root of that for
the equivalent Potts model. The Hamiltonians (3.1a) are readily recovered by taking
the logarithmic derivative of the row-to-row transfer matrix with respect to .

3.3. IRF models

Let us turn to the [RF models related to the representation ¢’ (2.15). Define an
operator W;(u) € End ¥, (1 <j < N) by

sinh(y —u), smh u

| rr
l(l‘p T

s
g (U;)

.
L
[
(==

Bt

sinh 7

where the parameter 7 is chosen as in (3.8) with the specialization (2.12) on the right-
hand side. By virtue of the TL relations among the ¢'(U; }s, the Yang-Baxter equation
(3.9) is valid again for the W;(u)s. As a result we obtain solvable IRF models with
the following features:

(1) the local states range over the set P ({) (2.7) of the DIWs of X{l)

(2) the adjacent pairs of [ocal states (a, ) must be admissible as spec1ﬁed in {2.13);
and

(3) the Boltzmann weight W, (:: 3) of the face configuration (a at the NwW

corner of the face, etc) is given by

sinh(sy — u)6 sinh U XsXq

a b sinl bd aind ae
W - sinh sinh 7 XaXe 3.11
u (d e if (a,b), (b, e), (e, d) and (d, ¢} are admissible ( )
0 otherwise

where the x s are those in (2.9) under the specialization (2.12).

Conditions (1) and (2} are depicted in the incidence diagrams of figure 2. Each
node therein corresponds to a local state. T'wo states can occupy adjacent lattice sites
if and only if the corresponding nodes are connected by a bond.

Using (3.7), one can relate the present IRF n'|odel~_~ to the vertex models in section
thraneh the rtav o INE eorresnandenca’ the sense of [18]. For M {A.) with

VIV UgL e V\.alh\.'\ wip CONres Jlluuuuu\.\, HI e Sense ol [ CEE ) q\.rll) Wit

Q2
D]

)

s = % and U,(C,) the present construction gives the trigonometric limit of the 8-
vertex solid-on-solid models [19]. The corresponding values of @ are given by the
Beraha numbers, @ = 4cos’z/L, thal appeared in the work [20] as observed in [21,
22]. Models having the structure (3.11) have also been discussed in [4, 22, 23). Due
to the TL equivalence with the '(J-state’ self-dual Potts model, they are critical for

@ < 4 and at a first-order transition for @ > 4.
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4. IRF models with @ > 4

In this section we investigate the order in the IRF models for ¢ > 4. From table 1 and
(2.12) we find that the following cases correspond to such a situation,

A(ll): s=1,1>5, ors?_%,lEQs-{-?

B . n>2i>3

- - 4.1
cV: w222 1
DV m>310>3.

As previously menticned, these models should be at a first-order transition point
because of their TL cqluvau,uu: with the Poits model. This i lrnpues the existence of a
broken symmetry or order within the system. Let us evaluate the correlation between
a boundary state a{®) and a state al®) deep within the lattice £ through the method
of [4]. In the following, we let /@ > 2 be as in table 1 under the specialization (2.12),
fix the parameter 1 by (3.6) with 5 > 0, and assume that 0 < u < 7.

Consider the partition function of the model

i) 4l
z= 3 IIw [ ) ) (4.2)
configurations faces

where the product extends over all faces of the lattice £. Substituting (3.11} into this
one gets an expansion of Z in terins of Kronecker deltas. Placing a diagonal bond con-
necting the sites i and & (j and [) when picking up terms involving é_¢) ;o (8,01 0 ),
each summand in the expansion is specified by a bond graph on £. The lattice sites
connected by a bond therein take the same state, forming a cluster. We fix the bound-
ary effects so that every bond graph consists of an infinite boundary cluster and some
finite clusters contained in it. Let (™) be a site variable belonging to the boundary
cluster and a'®) be the one deep within the lattice £. We define the correlation F,,

by

_ a(l a(j)
F =2 z 6 (0 O () H [a”) a(.i:)] (4.3)

configurations faces

for any a,b € P,(I). It is the probability of finding the configurations such that
al® = g under the condition that the boundary cluster assumes the value b. It is well
known that the bond graphs on £ are in one-to-one correspondence with the so-called
polygon decompositions on its dual lattice (cf [24]). In [4], Owczarek and Baxter have
extensively used this fact and obtained a formula expressing the correlation of this
kind in terms of ‘generalized percolation probabilities’. It applies quite generally to
the TL type IRF models having the structure (3.11) with Q > 4. To adapt it to the
present models, we define a P, ({)] x [Py {{)] matrix V by

V= (Vuiu)u,bEP+[.!)
v, = it if () is admissible (4.4)
Xa

=0 otherwise.
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We also define ¥ = (Yasdaep, () to be the matrix that diagonalizes V' and denote by
{A. | e € P,(1)} the complete set of cigenvalues of V. Then

Y™IVY = diag(A,)eep, - (4.5)

We regard the lattice £ as consisting of two sublattices in the usual way and set r = 0
or 1 according to whether a(® and a(®) helong to the same sublattice or not. Under

thig settine. we annly (8 7Y in (4] (with minar madificatian) and dedvsa tha fallawing
BINS BRLLINGG YT apphy (M7 UL e (wWva THINGT uuuuuu,u.unuu anl QOOULS LT ICLa0Wilig

expression for the correlation 7, (4.3)

Fa= Y, Yb( =1y LG (4.6a)
c€ P4 (1
| e (B =42 _ 9y 4 o= (1673 :
GU( )—]—[(l Hi—dlipns ) u; ) (4.6b)
i=l i+e” (=f ”U‘J_Aj'f'e \, J ;
.{.(3"8111(22 2)+e_15j,1
Z) \/“ H( 1 +e—‘5-7"(Q — 2) -{-e"]ﬁJﬂ) (4.60)

The quantities Gy(z) and (((z) are first obtained in [25] as the generating func-
tions for ‘generalized percolation probabilities’ in the dichromatic formulation of the

self-dual Potts model. Matheinatically, they are ratios of the level 1 A ) characters
(cf [12) p 217)

A (1)
COSI[A {y,e™%)

Gy 4y = o r=0,1 (4.7a)
(‘ObllA (e =40
) el
EZ+ ok
cosh’y (y, p) = - 4.7b
A Hk:l l —pL) ( )

where the subscript A, (r = 0, 1) signifies the highest weight of the level 1 A(ll) mod-
ules. In this way the probleln Is reduced to finding the matrix Y in (4.5) that di-
agonalizes the matrix V in (4.4}, This has been done in the appendix: see {AS).
In particular, we have exploited the fact that the admissibility condition in (2.13) is
nothing but the fusion rule in level | X,[,U wzw model in conformal field theory [5].

With the use of Verlinde’s forinula [26] we arrive at the result

) 5
Tab = —walﬁ Z 5lz(' Sm Gr (-E—C) (48‘1)
YhiAg cEPL(N) “lAgc

where S = (533 )a sep, 1y 18 iven in (A3). It is the symmetric unitary matrix describing

a modular transformation rule of the level { X{) characters. In view of (4.5), (4.6a)

and (A8), this result can also be expressed as the matrix element
For = GV = XX5  Go(Ng )y, (4.88)

where N, is the fusion rule matrix (A7b). "The correct normalization >aFau =1 has
been achieved due to the identity

> ColNe)yaxs (4.9)

ag Py ()
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which immediately follows from (v.(v/Q) = 1 and (2.14), i.e

th = z (Nf)bd-\'a' (410)

a€ Py ()

The result (4.8) gives a description of the order in the IRF models for the cases
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Appendix. Diagonalization of the matrix V

Here we diagonalize the matrix V defined in (4.4) and thereby determine Y and A,
in (4.5). Clearly one has to convert the condition ‘admissible’ in (4.4) into a more
manageable form. The key to doing this is the observation that the admissibility (2.13)
is nothing other than the fusion rule in the level { X! wzw model in conformal field
theory [5]. More precisely, we have the quantity Nfc determined from any three DIWs
a,b,c€ P () such that

Il

N =1 if (e, b) is admissible
ag

(A1)

0 otherwise,

Here £ € P, (I) has been listed in table 1. It is the DIW whose classical part £ specifies
the basic constituent V— of our formulation in the main text. Furthermore, the Nb
has the following expressnon known as Verlinde’s formuia [26]:

5.8 8]
b I CEad b d .
Nie= N = 3D eiudis (A2)
de P4 “HAgd

where = stands for the camplex conjugate and 5 = (S ), pep, ¢y 1 the modular

transformation {r — —1/7) watrix of the level | X4" characters. The elements are
essentially specialized characters of the classical part X, evaluated at a + p {12].

S =€ H sm-— <a+pa>)Tr Vﬁ(e‘z”i(a*ﬁ)ﬂ') ' (A3)
nEA+

where A denotes the set of positive roots of X, and ¢ is a constant specified in table
1 and independent of @ and b. For example in A(l”, one has
2 ma, b,

Sub = msm 7 T )
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fora=({I+1-a)A;+ (¢, — 1A and b= {1+ 1—b)Ag + (b, — 1)A,. For the other
algebras, explict formulae in terins of deterininants can be found in [27]). The Sis a
symmetric unitary tnatrix, i.e.

Sab = Spa Y S She = 6y (A4)
cePy(l)

In particular, 5;,_ , is known to be real and positive for any a € P (). From {(A2)
and (A4) we have

. . e
Z N:fbbc = 'SGL‘ b' S . (A5)
BEPLLD {foe

Comparing (A3) with (1.2) and (2.8} under the specialization {2.12), we also get

S
V@ = 5 (A6a)
Ao lAo
- ‘S'H\uu A6b
Xa =gt (A6b)
Ao lAo

In terms of [P, ()] x | P, ({})] matrices N and x defined by

x = diag (xu)aemln P

_ b
NE - (NGE)(I.,bEP.{.(U (ATb)

the matrix V in (4.4) is writlen as
V= x'lNE X- (A8)

Therefore from (4.5}, the A_s are in fact eigenvalues of the fusion rule matrix N, and
xY is the one diagonalizing it. Thus froin (A5) we find the solution

‘S‘bc (Yw-l) — G S'Mga A

ca et

e (A9)

ch* c = S '
I.’\uc

Siag s

This completes the diagonalization of the matrix V.

Note added in proof. The authors thank D T Deguchi for informing us that the multi-parameter
representations (2.5} and (2.6) have also been obtained in [28]. Very recently, i, (SU(2))-invariant
Hamiltonians were discussed in [29] and written in terms of classical spin generators for spin % The
1RF models of structure {3.11) have also been studied by a number of authors {see e.g. [30—33] and

references therein).
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